Welcome to the forum   
Welcome Guest! To enable all features please Login or Register.

Notification

Icon
Error

Share
Options
View
Go to last post in this topic Go to first unread post in this topic
Offline Michael4  
#1 Posted : 13 December 2018 16:00:01(UTC)
Michael4

United Kingdom   
Joined: 02/02/2017(UTC)
Posts: 642
Location: England, South Coast
I'm thinking about changing my layout and in attempt to have multiple layers in minimum space I'm thinking about using helixes (or helices).

It would seem that a ready made double track (5100 and 5200) helix exists.

But...what about gradient. The gradient is presumably one circle equals one height clearance?

Surely this gradient is far too steep for a tinplate train?

Furthermore I use catenary, wouldn't the increased 'headroom' make the gradient even worse? Or...can I fix wires to the underneath of the surfaces rather than use posts.

Anyway, has someone done such a thing and does it work?
Offline Alsterstreek  
#2 Posted : 13 December 2018 20:47:23(UTC)
Alsterstreek

Germany   
Joined: 16/11/2011(UTC)
Posts: 5,669
Location: Hybrid Home
Some quotes in this context:

1) "Tex" has a M track helix:

Originally Posted by: Tex Go to Quoted Post
I have been operating a three level marklin layout with a helix for a number of years and would like to offer some words of advice.

(1) building a helix is not difficult and can be done in different ways. The key to making one is to use careful planning

(2) Use R2 radius as a minimum

(3) MY R2 helix has a rise of 3 3/4 inch per each 360 degree loop. This amount of rise is no problem for my marklin trains.

(4) I constructed my helix from 1/4 inch plywood cut into 180 degree segments. The plywood is supported by eight 5/16 inch threaded rods with nuts and washers top and bottom.

Good luck , I had a good time building my helix and expect you will to . but, remember to plan ahead

Tex


"H0" had an idea about catenary in a helix:

Originally Posted by: H0 Go to Quoted Post
Hi!
I've seen pictures of several helixes where a single N gauge rail (e.g. split N gauge flex track) was used as catenary. Thus you don't have to allow fully extended pantographs (but you need transition pieces at the ends of the helix).


Video of a double track helix made with M track:

Offline dominator  
#3 Posted : 13 December 2018 21:32:53(UTC)
dominator

New Zealand   
Joined: 20/01/2015(UTC)
Posts: 1,195
Location: Kerikeri
The helix doesn't have to be round. It can be oval. The more straight pieces you add, the less the slope will be.
Northland. NZ REMEMBER 0228 for ä
Offline Minok  
#4 Posted : 13 December 2018 22:57:19(UTC)
Minok

United States   
Joined: 15/10/2006(UTC)
Posts: 2,310
Location: Washington, Pacific Northwest
I'm planning/building a helix based on C-track so I suspect the same geometry considerations would apply for M-track.
For the rise, yes, any added height, between one base of the track and the base of the track after 1 revolution increases the grade.

So raised pantographs and catenary towers do require a revolution make a bigger rise. If you plan to operate with the pantographs up (contacting and riding off of the catenary), attaching some sliding surface, flex track or even blank wire to slide over, is a good idea, as you can mount that directly to the bottom surface of the loop above. The only trick is the trasitions at the entry/exit where you need to gradually slope the contact surface to/from the height of the catenary posts. If your powering via catenary, that would be the best option. If your only using the catenary cosmetically and artificially locking the height of the pantographs so they don't fully extend, then you have pretty much the same constraints and just need to make a safe exit from the non-catenary helix/tunnel onto the wires that then become the visible catenary space - to prevent any pantograph tangling.

Märklin locomotives tend (in general) to have much better climbing characteristics than say the bulk of DCC locomotives, because Märklin use traction tires more and metal body and chassis locos often weigh more, all providing better traction. I'm 'planning' on doing an experiment when I start building in 2019 to see how high I need to crank the grade in the helix before the train cannot smoothly get up it anymore. (via the threaded rod assembly method). A key factor of the maximum grade isn't just the loco but also the train - the cars and their weight and length. In my model world, I'll be running short trains pretty much exclusively, so the loco only needs to pull 3-4 passenger coaches or 6-8 freight cars. If I was wanting to pull prototypical 9-12 passenger coaches or 40 car freight trains then I'd likely need a much larger (oval) helix than I'm planning.

My plan is an R1/R2 C-Track helix. I've seen many youtube videos of such helix working fine, so I'm not expecting any problems, but, and to speak to Tex' good advice, I've planned my 2 track helix so that the climbing side is on the outside (R2) track - thanks to Germany being right hand drive this isn't an issue, I just go up counterclockwise. The R1 inside radius is the downhill side, thus the concerns over R1 climb grade go away. So my added advice is: design so that the climbing side of the helix is the outside track - so if your Germany your helix goes up counterclockwise, and if your are the UK for example, it goes up clockwise.

The general wisdom is about 10cm of space is needed per turn to allow for the space for track, loco, etc. The thinner the wood, the less space you need (but the more it may sag unless reinforced). If one builds a carbon fiber track base, that would be the thinnest I imagine. Good plywood is the minimum - stay away from any particle/strandboard/MDF solutions as they will sag over time from room moisture. (see Everard Junction's older layout)

Thin acoustic buffer between track and helix bed also cuts down on the grade - if the helix is to be put inside an enclosure (eg mountain scenery ) where the sound is kept inside, then adding cork/insulation may not even be necessary - screw the track to the wood directly.

When building a helix, plan in a way for you to get yourself inside the center for problem resolution and possible occasional track cleaning work; maybe plan in some LED lighting and a camera if its all to be enclosed inside landscape.


Toys of tin and wood rule!
---
My Layout Thread on marklin-users.net: InterCity 1-3-4
My YouTube Channel:
https://youtube.com/@intercity134
thanks 1 user liked this useful post by Minok
Offline Michael4  
#5 Posted : 14 December 2018 09:30:49(UTC)
Michael4

United Kingdom   
Joined: 02/02/2017(UTC)
Posts: 642
Location: England, South Coast
Thanks all, lots of good advice.

A couple of questions:

1) Do you reduce the gradient at the beginning and end of the helix or is this not really possible in practical terms?

2) Have you tried having a set of point part way up the helix to run off to another track? If so were there problems associated with the angle of track? In other words, the train will be leaning over as it comes off the helix and onto the side track, is this a problem?

MrB32  
#6 Posted : 15 December 2018 01:58:31(UTC)
Guest


Joined: 06/01/2010(UTC)
Posts: 260
Here is an example...

Online Ausipeet  
#7 Posted : 15 December 2018 05:14:02(UTC)
Ausipeet

Australia   
Joined: 04/06/2012(UTC)
Posts: 314
Location: Adelaide
Have a read of this link it is explained fairly straight forward,
I constructed a three layered Helix after reading this page,
although this websitewith this link is for N scale it is easy to convert to HO.

Made mine in sections as described in the link and allowed 10 cm in between each level.

https://www.nproject.org...een-klimspiraal-of-helix

also you will need a translator app for all this site is in Dutch.
Hope it helps.
Users browsing this topic
Forum Jump  
You cannot post new topics in this forum.
You cannot reply to topics in this forum.
You cannot delete your posts in this forum.
You cannot edit your posts in this forum.
You cannot create polls in this forum.
You cannot vote in polls in this forum.

| Powered by YAF.NET | YAF.NET © 2003-2024, Yet Another Forum.NET
This page was generated in 0.731 seconds.